國立政治大學 110 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試 科目	組合學	考試 日期	2021年9月27日	考試 時間	09:00 至 12:00
----	-------	----------	-----	----------	------------	-------	---------------

- · 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。 · 本試題卷共有7個問題,總計120分。
- 1. (16 %) Find the number of spanning trees in K_n (the complete graph of n vertices). If possible, use as many different methods as you can to derive your results.
- 2. (16%) A Hadamard matrix of order n is an $n \times n$ matrix H with entries +1 and -1, such that $HH^T = nI$.
 - 1. Prove that if H is a Hadamard matrix of order n, then n = 1, 2, or $n \equiv 0 \mod 4$.
 - 2. Construct a Hadamard matrix of order 16.
- 3. (16 %) 1. Let a_n be the number of partitions of n with all parts ≥ 2 . Express a_n in terms of p(n), the number of partitions of n.
 - 2. For nonnegative integers n, r, compute $\sum_{i=1}^{r} (-1)^{i} {r \choose i} (r-i)^{n}$.
- 4. (16 %) 1. If a simple graph of n vertices has no K_p , at most how many edges can it have?
 - 2. The sets A_1, A_2, \ldots, A_k are distinct subsets of $\{1, 2, \ldots, n\}$ with $A_i \cap A_j \neq \emptyset$ for all i, j. Find the maximal possible value of k.
- 5. (16 %) Let G be a connected planar graph and e, v be the number of edges and vertices, respectively.
 - 1. If e > 1, prove that $e \le 3v 6$.
 - 2. If further, suppose all cycles of G are of length at least k. Prove that $e \leq \frac{k}{k-2}(v-2)$.
- 1. Write down the definitions of the Stirling numbers of the (signless) first kind $c_{n,k}$ and 6. (20%) the second kind $S_{n,k}$. Also $s_{k,m} := (-1)^{n-k} c_{n,k}$.
 - 2. Deduce recurrence formulas respectively for $c_{n,k}$ and $S_{n,k}$.
 - 3. Prove that $\sum_{k=1}^{n} S_{n,k} s_{k,m} = \delta_{n,m}$.
- 7. (20%) A ternary tree is a rooted tree data structure in which each *inner node* has exactly three child nodes (distinguished as left, mid, right respectively). A node is a *leaf* if it has no child. It is clear that a ternary tree of n inner nodes has exactly 2n + 1 leaves. Let t_n be the number of ternary trees with n inner nodes. For example, there are $t_3 = 12$ ternary trees of 3 inner nodes (and 7 leaves).

Find the functional equation for the generating function $T = \sum_{k=0}^{\infty} t_k z^k$, then derive both the exactly formula t_n and an asymptotic formula for t_n . (If you find this problem too hard, do the 'binary tree'

命題老師簽章: 日期: ■ 試題隨卷繳交 (Teacher's Signature) (Date) ■ 不可使用計算機