國立政治大學 111 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試科目	組合學	考試 日期	2022年9月19日	考試 時間	09:00 至 12:00
----	-------	------	-----	----------	------------	-------	---------------

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。本試題卷共有9個問題,總計100分。
- 1. (20%) Let $T_{n,p}$ denote the Turán graph on n vertices which is a complete multipartite graph with p partite sets S_1, S_2, \ldots, S_p which are as nearly equal in size as possible, that is $||S_i| |S_j|| \le 1$ for any i, j. Let K_{p+1} denote a complete graph on p+1 vertices.
 - (1) **Prove** that the number of edges in the Turán's graph $T_{n,p}$ is

$$\frac{(p-1)(n^2-r^2)}{2p} + \binom{r}{2},$$

provided that n = tp + r, where t and r are nonnegative integers, and $0 \le r < p$. (2) **Prove** that if a simple graph G on n vertices with m edges does not contain K_{p+1} as a subgraph, then

$$m \le \frac{p-1}{2p}n^2$$

2. (10 %) A doubly stochastic matrix is a nonnegative square matrix M such that the sum of entries in each row of M is 1 and the sum of the entries in each column of M is also 1. A permutation matrix P is a doubly stochastic matrix whose entries are either 0 or 1. **Prove** that a doubly stochastic matrix M can be expressed as

$$M = c_1 P_1 + c_2 P_2 + \dots + c_\ell P_\ell$$

where P_1, \ldots, P_ℓ are permutation matrices and c_1, \ldots, c_ℓ are positive real numbers such that $c_1 + \cdots + c_\ell$

- 3. (10 %) Let r, p, q be positive integers with min $\{p, q\} \ge r \ge 1$. Prove that there exists a minimal **positive integer** N(p,q;r) with the following property. Let S be a set with n elements. Suppose that all $\binom{n}{r}$ r-subsets of S are colored **red or blue**. Then if $n \geq N(p,q;r)$, we must have either some p-subset of S for which every r-subset is colored red or some q-subset of S in which every r-subset is colored blue.
- 4. (10 %) The Möbius function $\mu(d)$ is defined as

$$\mu(d) := \left\{ \begin{array}{ll} 1 & \text{if } d \text{ is the product of an even number of distinct primes,} \\ -1 & \text{if } d \text{ is the product of an odd number of distinct primes,} \\ 0 & \text{otherwise.} \end{array} \right.$$

The Riemann zeta function is defined in the complex plane with Re(z) > 1 such that

$$\zeta(z) := \sum_{n=1}^{\infty} \frac{1}{n^z}$$

- (1) **Prove** that $\sum_{d|n} \mu(d) = 0$ for n > 1.
- (2) **Prove** that $\frac{1}{\zeta(z)} = \sum_{i=1}^{\infty} \frac{\mu(n)}{n^z}$.

國立政治大學 111 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試科目	組合學	考試 日期	2022年9月19日	考試 時間	09:00 至 12:00
----	-------	------	-----	----------	------------	-------	---------------

5. (10%) Let s(n, k) denote the **Stirling numbers of the first kind**.

(1) For $n \geq 0$, prove that

$$\sum_{k=0}^{n} s(n,k)x^k = (x)_n$$

where $(x)_n$ is defined as

$$(x)_n := \begin{cases} x(x-1)\cdots(x-n+1) & \text{if } n \ge 1\\ 1 & \text{if } n = 0 \end{cases}$$

(2) Prove that

$$\sum_{n=k}^{\infty} s(n,k) \frac{z^n}{n!} = \frac{1}{k!} (\ln(1+z))^k$$

6. (10%) Let $x_1x_2\cdots x_n$ be the product of n numbers. Let u_n denote the number of ways of parenthesizing $x_1x_2\cdots x_n$ to specify the order of multiplication. For examples, $u_1=1$ and there are $u_4=5$ ways to parenthesize $x_1x_2x_3x_4$:

$$x_1(x_2(x_3x_4)), x_1((x_2x_3)x_4), (x_1x_2)(x_3x_4), (x_1(x_2x_3))x_4, \text{ and } ((x_1x_2)x_3)x_4$$

Prove that

$$u_n = \frac{1}{n} \binom{2n-2}{n-1}$$

7. (10 %) Define $p_{\text{odd}}(n)$ as the number of partitions of n into **odd parts** and $p_{\text{dist}}(n)$ as the number of partitions of n into **unequal parts**. For examples, we have $p_{\text{odd}}(6) = 4$ since

$$6 = (1+1+1+1+1+1) = (3+1+1+1) = (3+3) = (5+1)$$

and $p_{\text{dist}}(6) = 4$ since

$$6 = (6) = (5+1) = (4+2) = (3+2+1)$$

- (1) **Prove** $p_{\text{odd}}(n) = p_{\text{dist}}(n)$ by using generating functions.
- (2) **Prove** $p_{\text{odd}}(n) = p_{\text{dist}}(n)$ yet again, this time by constructing a bijection between partitions.
- 8. (10 %) Let P be a partially ordered finite set. Let m_P denote the minimum number of disjoint chains which together contain all elements of P, and let M_P denote the maximum number of elements in an antichain of P. **Prove** that $m_P = M_P$.
- 9. (10%) Let P be a finite partially ordered set with the binary relation \leq . The zeta function ζ of P is defined by

$$\zeta(x,y) := \left\{ \begin{array}{ll} 1 & \text{if } x \leq y \text{ in } P \\ 0 & \text{otherwise} \end{array} \right.$$

which is a square matrix whose rows and columns are indexed by the elements of P. Let μ denote the Möbius function of P which is the inverse of ζ , that is $\mu\zeta=I$ (the identity matrix). If $x,y\in P$, a sequence $x=x_0< x_1< \cdots < x_k=y$ is called a chain of length k from x to y. Let $c_k(x,y)$ denote the number of such chains. For an example, if x< y, then $c_1(x,y)=1$. **Prove** that

$$\mu(x,y) = \sum_{k>1} (-1)^k c_k(x,y)$$

命題老師簽章:

日期:

.022年9月6日

■試題隨卷繳交

(Teacher's Signature)

(Date)

■不可使用計算機