國立政治大學 112 學年度第一學期 博士班資格考 試題卷 ## NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM | 系別 | 應用數學系 | 考試
科目 | 組合學 | 考試
日期 | 2023 年 9 月 18 | 考試
日
時間 | 09:00 至 12:00 | |----|-------|----------|-----|----------|---------------|---------------|---------------| |----|-------|----------|-----|----------|---------------|---------------|---------------| ## 注意事項 - 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。 - 本試題卷共有 6 個問題,總計 100 分。 - 1. (a) (5 %) Let A(G) be the adjacency matrix of a simple graph G. Show that the i, j-entry of A^n is the number of walks of length n on G from i to j. - (b) (5 %) Let P_n be the path graph on n vertices and 1 one of its the endpoints. Find the 1, 1-entry of $A(P_{2n})^n$. - (c) (5 %) Let C_n be the cycle graph on n vertices and 1 one of its vertices. Find the 1,1-entry of $A(C_{2n})^n$. - 2. Let R(p,q) be the Ramsey number. That is, the smallest integer k such that any blue-red coloring on the edges of K_k always lead to a blue K_p or a red K_q . - (a) (10 %) Show that $R(p,q) \le R(p-1,q) + R(p,q-1)$. - (b) (5 %) Show that $R(p,q) \leq \binom{p+q-2}{p-1}$ for any $p,q \geq 2$. - 3. (a) (10 %) A permutation σ on $[n] = \{1, \ldots, n\}$ is called a derangement if $\sigma(i) \neq i$ for all $i \in [n]$. Use the principle of inclusion and exclusion to find the number d_n of derangements on [n]. - (b) (5 %) Find the probability of getting a derangement when n is large. That is, find $\lim_{n\to\infty}\frac{d_n}{n!}$. - 4. (15 %) Find the exponential generating function for the number of symmetric $n \times n$ permutation matrices. - 5. (20 %) Let \mathcal{B}_n be the boolean lattice. That is, the poset defined on the subsets of $\{1, \ldots, n\}$ with the subsets ordered by inclusion. Find the largest cardinality of an antichain in \mathcal{B}_n . Describe all the antichains achieving the maximum cardinality. Justify your answer. - 6. (20 %) Let Γ be a transportation flow with source S and sink T such that each edge has integral capacity. Show that the maximum flow equals the minimum cut. Moreover, there is a flow achieving the maximum such that its flow on each edge is integral.