國立政治大學 111 學年度第二學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系另	應用數學系	考試科目	高等機率論	考試日期	2023年2月20日	考試時間	09:00 至 12:00
----	-------	------	-------	------	------------	------	---------------

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。
- 本試題卷共有10個問題,從其中挑六題做,並請清楚的註明哪六題要採計分數。採計分數的六題中,完整的答對四題保證通過。請書寫清楚,並嚴謹的解釋所有的步驟,任何書寫或是解釋上的不清楚都會導致沒有分數。

1. 第一題題目

Suppose that X is a random variable uniformly distributed on [-1, 1]. Find $E[X|X^2]$. In order to get points, you have to justify your answer rigorously.

2. 第二題題目

Find a way to describe any σ -field on the set $\{1, 2, ..., n\}$ where n is a positive integer.

3. 第三題題目

Let $([0,1), \mathcal{B}([0,1)), \lambda)$ be the probability space where $\mathcal{B}([0,1))$ is Borel sets on [0,1) and λ is Lebesgue measure on [0,1). Define

$$X_n(\omega) = \sum_{k=1}^{2^n} \left(\frac{1 - (-1)^k}{2}\right) 1_{\left[\frac{k-1}{2^n}, \frac{k}{2^n}\right)}(\omega), \ n \ge 1.$$

Show that X_n 's are independent.

4. 第四題題目

Suppose that $\{X_n, n \geq 1\}$ is a sequence of i.i.d. random variables with

$$P\{X_1 = 1\} = p \text{ and } P\{X_1 = -1\} = 1 - p, \text{ where } \frac{1}{2}$$

Define $S_n = \sum_{j=1}^n X_j$ for $n \ge 1$ and $S_0 = 0$, show that this random walk $\{S_n, n \ge 0\}$ is transient.

5. 第五題題目

Let (Ω, \mathcal{B}, P) be the probability space, X be an integrable random variable and $\{\mathcal{F}_n \subseteq \mathcal{B}, n \ge 1\}$ be a family of σ -fields. Show that

$$\{E[X|\mathcal{F}_n], n \geq 1\}$$

is uniformly integrable.

6. 第六題題目

Let $\{X_n, n \ge 1\}$ be a sequence of i.i.d. random variables with $P\{X_1 = 1\} = P\{X_1 = -1\} = 1/2$. Define

$$M_n = \sum_{k=1}^n a_k X_k, \ n \ge 1.$$

Show that if $\sum_{n=1}^{\infty} a_n^2 < \infty$, then M_n converges a.s. as $n \to \infty$.

國立政治大學 111 學年度第二學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試科目	高等機率論	考試日期	2023年2月20日	考試時間	09:00 至 12:00
----	-------	------	-------	------	------------	------	---------------

7. 第七題題目

Suppose that X and Y are independent with common distribution having mean zero and variance one, and suppose further that

$$\frac{X+Y}{\sqrt{2}} \stackrel{d}{=} X \stackrel{d}{=} Y.$$

Show that both X and Y have a N(0,1) distribution. Hint: Use characteristic function and the central limit theorem.

8. 第八題題目

Let $\{X_n, n \ge 1\}$ be an i.i.d. sequence of random variables. Show that if for every $\epsilon > 0$

$$\sum_{n=1}^{\infty} P[|X_1| \ge \epsilon n] < \infty,$$

then

$$\lim_{n \to \infty} \left| \frac{X_n}{n} \right| = 0 \quad a.s.$$

9. 第九題題目

Prove or disprove that if X_n converges to X in distribution, then X_n converges to X a.s.

10. 第十題題目

Suppose that $\{X_n, n \geq 1\}$ is a sequence of i.i.d. random variables such that

$$P[X_n = n^3] = P[X_n = -n^3] = \frac{1}{2n^2}$$
 and $P[X_n = 1] = P[X_n = -1] = \frac{1}{2} - \frac{1}{2n^2}$.

Show that

$$\frac{\sum_{j=1}^{n} X_j}{n}$$
 converges to 0 a.s.

as $n \to \infty$.