國立政治大學 112 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試 科目	高等機率論	考試 日期	2023年9月18日	考試 時間	09:00 至 12:00
----	-------	----------	-------	----------	------------	-------	---------------

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。本試題卷共有5個問題,總計100分。

Notice: In the following, we use \mathbb{N} to denote the set of positive integers and write $\mathbb{P}(E)$ and $\mathbb{E}X$ for the probabiltiy of event E and the expextation of random variable X. When writing $\mathbb{E}(X|Y)$, we mean the conditional expectation of random variable X given the σ -field generated by Y.

1. (20 %) For $n \in \mathbb{N}$, let X_n be a random variable having absolutely continuous distribution with density

$$f_n(x) = \begin{cases} c_n |\sin(n\pi x)| & \text{for } x \in (0,1), \\ 0 & \text{otherwise,} \end{cases}$$

where c_n is a constant.

- (1) (5%) Determine c_n .
- (2) (15%) Show that X_n converges in distribution to some random variable X and determine the distribution function of X.
- 2. (20%) Let $(Y_n)_{n=1}^{\infty}$ be a sequence of i.i.d. random variables satisfying $\mathbb{P}(Y_n=1)=\mathbb{P}(Y_n=1)$ -1)=1/2 for $n\in\mathbb{N}$ and set $Y=\sum_{n=0}^{\infty}\frac{Y_n}{2^n}$. Find the distribution of Y.
- 3. (20 %) Fix c>0. Let $(T_n)_{n=1}^{\infty}$ be a sequence of independent random variables satisfying $\mathbb{P}(T_n=$ n^c) = $\mathbb{P}(T_n = -n^c) = 1/2$ for $n \in \mathbb{N}$. Set $S_n = T_1 + T_2 + \cdots + T_n$. Show that $\frac{S_n}{n}$ converges to 0almost surely if and only if c < 1/2.
- 4. (20%) Let $(W_n)_{n=1}^{\infty}$ be i.i.d. random variables with $\mathbb{E}|W_1| < \infty$ and set $Z_n = W_1 + \cdots + W_n$. Show that $\mathbb{E}(W_1|Z_n,Z_{n+1},...)=\frac{Z_n}{z_n}$ almost surely.
- 5. (20 %) Let $(U_n)_{n=1}^{\infty}$ be a sequence of i.i.d. standard normal random variables and set

$$V_n = \frac{1}{\sqrt{n+1}} \exp\left\{ \frac{(U_1 + U_2 + \dots + U_n)^2}{2(n+1)} \right\}.$$

- (1) (10%) Show that $(V_n)_{n=1}^{\infty}$ is a martingale.
- (2) (10%) Show that V_n converges almost surely and find the distribution function of the limit.