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Please show all your work.

1. (20 %) Consider the problem
dx

=g z(0) = xg.

dt ’
Prove that
a. If zo = 0, then the solution is not unique for ¢ € (—o0, 00).

b. If 2y > 0, then there exists small ¢ > 0 such that the solution is unique for ¢ € (—e¢, €).
2. (20 %) Letn(t) be a nonnegative differentiable function on [0, 7] which satisfies the inequality
1'(t) < o(t)n(t) +¥(t),

where ¢(t) and 1 (¢) are nonnegative continuous functions on [0, 7|. Prove that forall 0 < ¢ < T

o0y < e [y + tw<s>ds} |

3. (20 %) Consider the system

dx

d_tl = Ty — xl(:ﬂ% +x§),

" (V)
2

= - — 332(.17% + x%)

a. Prove that (0, 0) is asymptotically stable for the nonlinear system (V).
b. Let 2’ = Az be the linearized system of (V) around (0, 0), find the matrix A and prove that (0, 0)
is the center for the linearized system.

4. (20 %) Let ®(x,xq) be the principal fundamental matrix of the linear system v = A(z)u in an
interval J. Prove that ®(z, z¢) = ®(x, z1)P(z1, 20), where z1 € J.

5. (20 %) Let p(t) and ¢(¢) be continuous functions in [tg, c0). Suppose that all solutions of z” +
p(t)x = 0 are bounded in [ty, 00). Show that all solutions of 2" + (p(t) + ¢(¢)) 2 = 0 are bounded

in [tg, 00) provided/ lq(t)] dt < oo.
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Remarks : For the convenience of reprinting please Write questions in black or blue-black ( but no red ) ink.





