國立政治大學 應用數學系 100 學年度第 一 學期

NATIONAL.	CHENGCHI UNIVERSITY EXAMINATION FORM	
	. V . I I I')) V V Y V X 31 E E - 4 J F V I - Y - 1') (V X X X I Y I - 1 V X X X I Y I Y I V X X X X X X X X Y I	

						5	
考試科目 Course	實變函數論	開課系級 Dept, & Class	研究所	日 期 Date, Period	100 年 9 月 19 日 上午 9:00~12:00	試題編號 Course No.	
不动策计划	56個題日,						

碩士班:請選5題作答,每題20分,請在答案卷最前面註明所選的5題,否則依學生作答之前5題計分。 博士班:6題全做答,每題17分,超過100分則以100分計。

1. Let

$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

- (a) Does the integral $\int_{-\infty}^{\infty} f(x) dx$ exist as an improper Riemann integral?
- (b) Is f(x) Lebesgue integrable over $(-\infty, \infty)$? Prove your answer!
- 2. Let p(x) be a polynomial function given by $p(x) = \sum_{i=1}^k a_i x^i$.
 - (a) Show that for any positive $\,y\,$ and natural number $\,n,\,\,|p(y/n)|\leq \sum_{i=1}^k|a_i|y^i.$
 - (b) Show that

$$n\int_0^\infty p(x)e^{-nx}dx\to p(0)\quad \text{ as } n\to\infty.$$

- 3. Let X be a normed linear space. Show that the set X^{*} of all bounded linear functionals on X is a Banach space.
- 4. Let $f \in L^1(\mathbb{R})$ be a uniformly continuous function on \mathbb{R} . Show that $\lim_{|x|\to\infty}f(x)=0.$
- 5. Suppose that $\{f_n\}$ is a sequence of nonnegative integrable functions such that $f_n \to f \text{ a.e., with } f \text{ integrable, and } \int_{\mathbb{R}} \, f_n \to \int_{\mathbb{R}} \, f. \text{ Prove that } \int_{\mathbb{R}} \, |f_n - f| \to 0.$
- 6. Suppose that $f \in L^1(\mathbb{R})$ is a absolutely continuous function on \mathbb{R} . Show that if in addition

$$\lim_{t \to 0+} \int_{\mathbb{R}} \left| \frac{f(x+t) - f(x)}{t} \right| dx = 0$$

Then $f \equiv 0$.

本考試:→不需使用簡易計算機,□ 使用簡易計算機 □