- 1. Let $C[a, b]$ be the space of all continuous real valued functions defined on the compact interval $[a, b]$.
	- (a) Is $C[a, b]$ a closed subspace of $L^{\infty}([a, b])$?
	- (b) Is $C[a, b]$ a closed subspace of $L^1([a, b])$?
	- (You should justify your answer!)
- 2. (a) Let M be a metric space and \mathfrak{B} be a collection of pairwise disjoint open balls in M. Show that if M is separable, then \mathfrak{B} is at most countable.
	- (b) Discuss the separability of $L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$.
- 3. State and prove the Riemann-Lebesgue Lemma.
- 4. Let X be a Banach space and F be a closed subspace of X .
	- (a) Define the quotient space X/F .
	- (b) Define the quotient norm on X/F .
	- (c) Prove, under the quotient norm, X/F becomes a Banach space.
- 5. Let $E \subseteq \mathbb{R}^n$ be a Lebesgue measurable set with finite Lebesgue measure $\lambda_n(E)$. Suppose $f: E \longrightarrow \mathbb{R}^*$ is a Lebesgue measurable function and

$$
E_k = \{ x \in E \mid (k-1) \le |f(x)| < k \}, k = 1, 2, 3, \dots
$$

Show that, for $1 \leq p < \infty, f \in L^p(E) \Longleftrightarrow \sum^{\infty}$ $k=1$ $k^p \lambda_n(E_k) < \infty.$

6. Let

$$
\beta(x) = \begin{cases} e^{-\frac{1}{1 - \|x\|^2}} & \text{if } \|x\| < 1 \\ 0 & \text{if } \|x\| \ge 1 \end{cases}, x \in \mathbb{R}^n
$$

and

$$
\alpha(x) = \beta(x) \left(\int_{\mathbb{R}^n} \beta(x) dx \right)^{-1}, x \in \mathbb{R}^n
$$

$$
\alpha_{\epsilon}(x) = \epsilon^{-n} \alpha(x/\epsilon), \epsilon > 0, x \in \mathbb{R}^n.
$$

Show that

- (a) $\alpha \in C_0^{\infty}(\mathbb{R}^n)$, $supp\alpha = \bar{B}(0, 1)$ and $\int_{\mathbb{R}^n} \alpha(x) dx = 1$.
- (b) $\alpha_{\epsilon} \in C_0^{\infty}(\mathbb{R}^n)$, $supp\alpha_{\epsilon} = \bar{B}(0; \epsilon)$ and $\int_{\mathbb{R}^n} \alpha_{\epsilon}(x) dx = 1$.
- (c) If $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$, then $f * \alpha_{\epsilon} \longrightarrow f$ in $L^p(\mathbb{R}^n)$ as $\epsilon \longrightarrow 0$. In particular, $C_0^{\infty}(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n)$.