- 1. Let (X, \mathcal{F}, μ) be a measure space and $\{A_n\}$ be a sequence in \mathcal{F} with $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Show that the set of all points belonging to infinite many A_n 's has measure zero.
- 2. Let $f(x) = e^{-[x]}$, where [x] is the greatest integer function. Is f(x) integrable over $[0, \infty)$ with respect to the Lebesgue measure? If yes, compute its integral.
- 3. Let (X, \mathcal{F}, μ) be a σ -finite measure space, k be a bounded measurable function on X and $1 \leq p \leq \infty$. Define T on $L^p(X, \mathcal{F}, \mu)$ by

$$(Tf)(x) = k(x)f(x), \quad \forall x \in X$$

Show that T is a bounded linear operator on $L^p(X, \mathcal{F}, \mu)$ and compute ||T|| the operator norm of T.

- 4. Show that the space C[a, b] of continuous functions on [a, b] is not complete with respect to L^2 -norm. What is the completion of C[a, b] with respect to L^2 -norm.
- Let (X, 𝔅, μ) be a finite measure space and {f_n} be a sequence of measurable functions on X.
 Discuss the relation of convergence a.e. on X, convergence in measure on X and L^p-convergence of {f_n}, 1 ≤ p ≤ ∞.
- 6. Let $(X, {\mathfrak F}, \mu)$ and $(Y, {\mathfrak I}, \nu)$ be two measure spaces and

$$f(x,y) = h(x)g(y), \quad \forall (x,y) \in X \times Y,$$

where $h \in L^1(X, \mathcal{F}, \mu)$ and $g \in L^1(Y, \mathfrak{I}, \nu)$. Show that f is measurable on the product measurable space $(X \times Y, \mathfrak{F} \times \mathfrak{I})$ and

$$\int_{X \times Y} f \, d(\mu \times \nu) = \left(\int_X h \, d\mu \right) \left(\int_Y g \, d\nu \right)$$