國立政治大學 109 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試科目	實變函數論	考試 日期	2020年9月21日	考試時間	09:00 至 12:00
----	-------	------	-------	----------	------------	------	---------------

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。
- 本試題卷共有7個問題,總計100分。
- 1. (15%) Let f(x) be a real valued continuous function on [0, 1]. Find the limit

$$\lim_{n\to\infty}(n+1)\int_0^1 x^n f(x)dx.$$

- 2. (15%) Given a measurable set $A \subset [0,1]$ with |A| > 0. Let $B = \cos(A) = \{\cos(x), x \in A\}$. Show that the measure of B is strictly less than the measure of A, i.e |B| < |A|.
- 3. (15%) Let $\{\phi_k\}$ be an orthonormal system and $\{c_k\}$ be a sequence of numbers in ℓ^2 . Show that there exists a function $f \in L^2$ such that its Fouerier series with respect to $\{\phi_k\}$ is exactly equal to $\sum c_k \phi_k(x)$.
- 4. (15 %) Given a measure space (E, \sum, μ) with $\mu(E) > 0$ and a bounded non-constant measurable function f(x). Show that there exists $\lambda \in \mathbb{R}$ such that $\mu(\{f \leq \lambda\}) > 0$ and $\mu(\{f > \lambda\}) > 0$.
- 5. (10 %) Let $\{f_k\}$ be a sequence of measurable functions on a measurable set E. Assume that f is a function on E, and let $E_k = \{x \in E : |f(x) f_k(x)| > \frac{1}{k^2}\}$. Suppose $|E_k|_e < \frac{1}{k^2}$, $\forall k$. Show that f is a measurable function.
- 6. (15 %) Let f: S → R be a uniformly continuous function defined on a subset S of a metric space M. Show that (1) f extends to a uniformly continuous function \(\overline{f} \) on \(\overline{S} \). (2) Such an extension is unique on \(\overline{S} \).
- 7. (15%) Let X be a normed space. We say $\{x_i\}_{i=1}^N \subset X$ is linearly independent if $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_N x_N = 0$ if and only if $\alpha_i = 0$ for all i. Now assuming $\{x_i\}_{i=1}^N$ is linearly independent. Prove that there is a constant c > 0 such that

$$||\lambda_1 x_1 + \cdots \lambda_N x_N|| \ge c(|\lambda_1| + \cdots + |\lambda_N|),$$

for any choices of scalars $\lambda_1, \dots, \lambda_N$.