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1. (15 %) Suppose fi, f € LP such that f, — fae., 1l <p < oo. If ||fi]|, < M < oo, show that
/fkg dp — /fg dp forall g € L9, where 1/p+1/q = 1.

. (15 %) Let (X, B, 1) be a probability space. Suppose / f du = 0 for every A € B. Show that
A
f=0a.e.

. (15 %) Let (X, B, 1) be a probability space and p(T *A) = u(A) for all A € B. Suppose
ggonzﬂ “ANB)=pu(A)u(B) VABEB.

Show that ;(E) = 0 or u(E) = 1 provided (T (E)AE) = 0, where A is the symmetric differ-
ence.

. (15 %) Show that there exist measurable functions fand g such that f o g is not measurable.

. (15 %) Let H be a Hilbert space. Let f,,, f € H for n € N such that (f,,,g) — (f,g) asn — o
for all g € ‘H. Then {f,} is bounded.

. (15%) Let p € N and X be a measurable space. Show that L”(X) is a Banach space with respect
to LP-norm.

. (10 %) Let (X, B, 1) be a probability space and p(T " A) = pu(A) for all A € B. Suppose A € B
is of positive measure. Show that for almost every = € A, there exists k € N such that T%(z) € A.
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Remarks : For the convenience of reprlntlng please Write questions in black or blue-black ( but no red ) ink.




