國立政治大學 111 學年度第二學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試 科目	實變函數論	考試 日期	2023年2月20日	考試 時間	09:00 至 12:00
----	-------	----------	-------	----------	------------	----------	---------------

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。本試題卷共有7個問題,總計100分。
- 1. (10 %) Let f be a measurable function and B a Borel set. Show that $f^{-1}(B)$ is a measurable set.
- 2. (15 %) Construct a sequence $\{f_k\}$ to show that convergence in measure does not imply pointwise convergence a.e., even for those functions defined on the sets of finite measure.
- 3. (15 %) Let $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} \frac{1}{\sqrt{x}} & x \notin \mathbb{Q} \\ x^3 & x \in \mathbb{Q} \end{cases}.$$

Prove that f is Lebesgue integrable on [0.1] and evaluate $\int_{0}^{1} f(x)dx$.

4. (15%) Use Fubini's theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|x|^2} dx = \pi^{n/2}.$$

5. (15%) Let $\phi(x), x \in \mathbb{R}^n$, be a bounded measurable function such that $\phi(x) = 0$ for $|x| \ge 1$ and $\int \phi = 1$. For $\varepsilon > 0$, let $\phi_{\varepsilon}(x) = \varepsilon^{-n} \phi(x/\varepsilon)$. If $f \in L(\mathbb{R}^n)$, show that

$$\lim_{\varepsilon \to 0} (f * \phi_{\varepsilon})(x) = f(x)$$

in the Lebesgue set of f. Here (f * q)(x) is defined by

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y)dy.$$

6. (15%) Let

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
, for $x > 0$ and $y > 0$.

Show that $\ln B(x, y)$ is a convex function of x, for each fixed y by Hölder's inequality.

7. (15%) If $f_k \to f$ in L^p , $1 \le p < \infty$, $g_k \to g$ pointwise, and $||g_k|| \le M$ for all k, prove that $f_k g_k \to fg$ in L^p .