國立政治大學 112 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試 科目	實變函數論	考試 日期	2023年9月18日	考試 時間	13:00 至 16:00
----	-------	-------	-------	----------	------------	----------	---------------

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。本試題卷共有8個問題,總計100分。
- 1. (10 %) Suppose that the function f is defined on a measurable set X and has the property that X(f > c) is measurable for each rational number c. Is f measurable?
- 2. (15%) Let $X \neq \emptyset$ and $\mathscr{A} \subseteq 2^X$. Suppose that (X, \mathscr{A}, μ) is a measure space.
 - a. If there exists a measurable set A in \mathscr{A} such that $\mu A < \infty$, show that $\mu \mathscr{D} = 0$.
 - b. Let $A, B \in \mathcal{A}$. Show that $\mu A + \mu B = \mu(A \cup B) + \mu(A \cap B)$.
 - c. If $\{E_k\}_{k\in\mathbb{N}}$ be a collection of measurable subsets of X. Prove that

$$\mu\Big(\bigcup_k E_k\Big) \le \sum_k \mu E_k.$$

- 3. (10%) Suppose f^2 is measurable and X(f > 0) is measurable. Show that f is a measurable
- 4. (15%) Let ϕ be increasing and right-continuous, i.e., $\lim_{u \downarrow x} \phi(y) = \phi(x)$. Define μ_{ϕ}^* by

$$\mu_{\phi}^*(E) := \inf \Big\{ \sum_n \big[\phi(b_n) - \phi(a_n) \big] : E \subseteq \bigcup_n (a_n, b_n) \Big\}, \quad E \subseteq \mathbb{R}.$$

- a. Prove that for each $b \in \mathbb{R}$, $\mu_{\phi}^*(\{b\}) = \phi(b) \phi(b^-)$, where $\phi(b^-) = \lim_{x \uparrow b} \alpha(x)$.
- b. Find the outer measure $m^*(C)$, where m^* is the Lebesgue outer measure and C is the Cantor set in [0, 1].
- c. Find the outer measure $\mu_{\rho}^*(C)$, where ρ is the Cantor function.
- 5. (10 %) Let $E \subseteq [0,1]$ be Lebesgue measurable and let $\varepsilon > 0$. Prove that there are finite number of open intervals, (a_i, b_i) , $i = 1, 2, \dots, n$ satisfying the following condition: if $G = \bigcup_{i=1}^n (a_i, b_i)$, then $m(G \setminus E) < \varepsilon$.
- 6. (10%) Let $f_n \in M(X)$ for $n \in \mathbb{N}$. If $f_n \geq g \in L^1$, then show $\int_X \liminf_n f_n d\mu \leq \liminf_n \int_X f_n d\mu$; if $f_n \leq g \in L^1$, then show $\int_V \limsup_n f_n d\mu \geq \limsup_n \int_V f_n d\mu$.
- 7. (10 %) Find the limit: $\lim_{n\to\infty} \int_0^\infty \frac{\sin(x/n)}{[1+(x/n)]^n} dx$.
- 8. (20%) Suppose 1 , <math>1/p + 1/q = 1, and $f \in L^p(\mathbb{R})$. Prove the following equalities:

國立政治大學 112 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系	别	應用數學系	考試 科目	實變函數論	考試 日期	2023年9月18日	考試 時間	13:00 至 16:00
---	---	-------	----------	-------	----------	------------	-------	---------------

a.

$$\|f\|_p = \sup_{g \in L^q, \|g\|_q = 1} \Big| \int_{\mathbb{R}} f(x) \overline{g(x)} dx \Big|.$$

b.

$$||f||_p^p = p \int_0^\infty t^{p-1} m(\mathbb{R}(|f| > t)) dt.$$

Notations and definitions:

- 1. $y \downarrow x$ means that y > x and y approaches x; $y \uparrow x$ means that y < x and y approaches x.
- 2. $X(f > a) := \{x \in X : f(x) > a\}.$
- 3. 2^X is the power set of X, i.e., the collection of all subsets of X.
- 4. M(X) is the collection of all measurable functions defined on the measure space (X, \mathscr{A}, μ) . $f \in M^+(X)$ means that $f \in M(X)$ and $f \geq 0$.
- 5. Let E be a measurable subset of \mathbb{R} with respect to the Lebesgue measure m. m(E) denotes the Lebesgue measure of E.