1. Let (X, Y) be continuous random variables such that $f(x, y) = e^{-y}$, $0 < x < y < \infty$.

- (a) Find $E(Y \mid X = 1)$.
- (b) Find the joint moment generating function of (X, Y).
- 2. Let X_1, X_2, \ldots, X_n be a random sample from the density

$$f(x;\theta) = \theta(1+x)^{-(1+\theta)}, \ x > 0, \ \theta > 0.$$

- (a) Find the best unbiased estimator of $1/\theta$.
- (b) Find the information lower bound for the variance of an unbiased estimator of $1/\theta$.
- 3. (a) Let X_1, X_2, X_3 be independent with density

$$f(x_i;\alpha_i) = \frac{1}{\Gamma(\alpha_i)} x_i^{\alpha_i - 1} e^{-x_i}, \ x_i > 0.$$

Let $U_1 = X_1 + X_2 + X_3$, $U_2 = X_2/U_1$, $U_3 = X_3/U_1$. Find the joint density of (U_1, U_2, U_3) .

- (b) Let $X \sim N(0, 1)$ and $\Phi(x) = P(X \le x)$. Find the density of $\Phi(X)$.
- 4. (a) Suppose that for all n, T_n is an estimator of $\tau(\theta)$. Show that if $bias(T_n) \to 0, Var(T_n) \to 0$, then T_n is a consistent sequence of estimators.
 - (b) Let $X_n \sim \Gamma(n, 1/n)$. Show that $X_n \xrightarrow{P} 1$.
- 5. Suppose $X_i \sim N(i\theta, 1)$, i = 1, 2, 3, are independent. Find the UMP size-0.05 test for testing $\theta = 2$ against $\theta > 2$. $(\sqrt{14} \doteq 3.741, \Phi(1.645) = 0.95$ where $\Phi(x) = \int_{-\infty}^{x} (1/\sqrt{2\pi})e^{-t^2/2} dt)$
- 6. Suppose X is a discrete random variable taking on the values 1, 2, 3, and 4, and θ takes on the values -1, 0, and 1. Suppose also that the density of X is giving in the following table:

x	1	2	3	4
f(x;-1)	0.53	0.30	0.00	0.17
f(x;0)	0.60	0.20	0.10	0.10
f(x;1)	0.60	0.22	0.18	0

Consider testing that $\theta = 0$ against $\theta \neq 0$.

- (a) Show that the 0.2 LRT for this problem rejects the null hypothesis if X = 3 or 4.
- (b) Show that the test which rejects the null hypothesis if X = 2 is a size-0.2 test which is more powerful than the LRT.