- 1. (a) Consider a Poisson process with rate λ . Let X be the time till the second arrival. Find the density of X.
 - (b) Suppose that we sample with replacement from a population of size N with proportion of successes p. Let V be the number of failures before the r-th success. Find the moment-generating function of V.
- 2. Let Z and U be independent, $Z \sim N(0, 1)$, and $U \sim \chi_k^2$. Let $T = Z/\sqrt{U/k}$ and W = U.
 - (a) Find the joint density of T and W.
 - (b) Find the marginal density of T.
- 3. Let X_1, \ldots, X_n be independent, with $X_i \sim N(\mu, \sigma^2)$. Find the size- α LRT for testing that $\sigma^2 = c^2$ against $\sigma^2 > c^2$, and show that it rejects the null hypothesis if $U > \chi^2_{n-1}(\alpha)$, where $U = (n-1)S^2/c^2$.
- 4. Let X_1, \ldots, X_n be independent, with $X_i \sim E(i\theta)$.
 - (a) Find the MLE of θ .
 - (b) Find a (1α) confidence interval for θ .
- 5. (Problem 4 continued)
 - (a) Find the lower bound for an unbiased estimator of $1/\theta$.
 - (b) Find the best unbiased estimator of θ^2 .
- 6. (a) Let X be a discrete random variable having the following density function:

x	0	1	2	3	4	5
f(x;0)	.05	.05	.10	.10	.20	.50
f(x;1)	.10	.15	.25	.15	.25	.10

Find the most powerful .15 test that $\theta = 1$ against $\theta = 0$.

(b) State and prove Neymann-Pearson Theorem for the continuous case.