國立政治大學 114 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試	數理統計	考試	2025年9月8日	考試	13:00-16:00
71.27		科目	·	日期		時間	

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。本試題卷共有5個問題,總計100分。

Please show all your work.

1. (30% Each 10%) Let X_1, X_2, \dots, X_n be i.i.d. random variable based on the probability density function written as

$$f(x|\theta) = e^{\theta T(x) - \psi(\theta)} h(x).$$

Let the true $\theta = \theta_0 \in \Theta_0$ where Θ_0 is the parameter natural space. Assume $\psi(\theta)$ is infinite differentiable and $\psi''(\theta) > 0$ for all $\theta \in \Theta_0$.

(a) Show the Fisher information function

$$I(\theta) = I\!\!E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^2 \right] = \psi''(\theta)$$

- (b) Prove that $\hat{\theta}_{MLE}$ is the consistent estimation of θ_0 . Namely, $\hat{\theta}_{MLE} \to \theta_0$ in probability.
- (c) Prove the asymptotic normality for $\hat{\theta}_{MLE}$. Namely

$$\sqrt{n}(\hat{\theta}_{MLE} - \theta_0) \sim N(0, I^{-1}(\theta_0))$$

where $I(\theta_0) = \psi''(\theta_0)$.

2. (10%) Let X_1, \dots, X_n be a random sample from the normal distribution with unknown mean μ and known variance σ^2 written as

$$f(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}.$$

Prove that for testing the simple hypothesis $H_0: \mu = \mu_0$ versus $H_a: \mu = \mu_1$, the likelihood ration test is the uniformly most powerful (UMP) test. Namely, show the proof of the Neyman Pearson Lemma.

命題老師簽章: 日期: ■試題隨卷繳交 月 日 (Teacher's Signature)

國立政治大學 114 學年度第一學期 博士班資格考 試題卷

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試	數理統計	考試	2025年9月8日	考試	13:00-16:00
34.34	- ' ' '	科目		日期	-0-c > >1	時間	

3. (30% Each 10%) Let X_1, \dots, X_n be a random sample from the normal distribution with unknown mean μ and known variance σ^2 written as

$$f(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}.$$

- (a) For testing $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$, does the uniformly most powerful (UMP) test exist? Please explain in details.
- (b) Given $\alpha = 0.05$, find the likelihood ratio test for testing $H_0: \mu = \mu_0$ versus $H_a: \mu \neq \mu_0$. Please show the decision function or decision rule based on reject region explicitly.
- (c) Given $\alpha = 0.05$, $\mu_0 = 60$, n = 100, $\sigma^2 = 1$, and $\overline{x} = 65$, find the 95% confidence interval. Does the result using likelihood ratio test same as the result using the CI? Please explain in details.

(Hint: Let Z be the standard normal random variable. We have $I\!\!P(Z>2.362)=0.01$, $I\!\!P(Z>1.96)=0.025$, $I\!\!P(Z>1.645)=0.05$, and $I\!\!P(Z>1.282)=0.1$)

- 4. (20% Each 5%) Let X_1, \dots, X_n be random samples driven by the Bernoulli distribution with the probability of success $0 \le \theta \le 1$.
 - (a) Find the maximum likelihood estimate.
 - (b) Is the maximum likelihood estimator sufficient? Prove or disprove it.
 - (c) Is the maximum likelihood estimator consistent? Prove or disprove it.
 - (d) Is the maximum likelihood estimator unbiased? Prove or disprove it.
- 5. (10% Each 5%) Let X_1, \dots, X_n be random samples driven by the Bernoulli distribution with the probability of success θ . Now, flip coin 10 times with two outcomes $\{H, T\}$. Define H means success. Given the data $\{TTTTTTTTTT\}$, find the maximum likelihood estimate in the following cases with restriction
 - (a) $0 < \alpha < \theta < \beta < 1$
 - (b) Given $0 < \gamma_1 < \gamma_2 < \gamma_3 < 1$, we only can choose $\theta = \gamma_1$, $\theta = \gamma_2$, or $\theta = \gamma_3$.

命題老師簽章: 日期: 年 月 日 (Teacher's Signature) (Date) ■ 不可使用計算機