NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試	數理統計	考試	2023年9月18日	考試	13:00 至 16:00
7,		科目		日期	, ,	時間	

注意事項

- 務必作答於答案卷並標明題號,請勿作答於試題卷上,否則不予計分。本試題卷共有6個問題,總計120分。

Please show all your work.

1. (10 %) Suppose X_1 and X_2 are random variables with joint p.d.f.

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} 6(1-x_2), & 0 < x_1 < x_2 < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Show that $U = \frac{X_1}{X_2}$ follows a uniform distribution on (0,1).

2. (10 %) Let X_1, X_2, \dots, X_n denote a random sample from the probability density function

$$f(x) = \begin{cases} \frac{2}{x^2}, & x \ge 2, \\ 0, & \text{otherwise.} \end{cases}$$

Does the weak law of large numbers apply to $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ in this case? Why or why not?

3. (40 %) Let $X_1, X_2, \dots, X_n, n > 2$, denote a random sample with the probability density function

$$f(x) = \begin{cases} \theta x^{\theta - 1}, & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

where $\theta > 0$.

- (a) (10 points) Show that $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a consistent estimator of $\theta/(\theta+1)$.
- (b) (10 points) Find the maximum likelihood estimator (MLE) $\hat{\theta}$ of θ .
- (c) (10 points) Show that the MLE $\hat{\theta}$ of θ found in (b) is biased?
- (d) (10 points) Show that $[(n-1)/n]\hat{\theta}$ is an unbiased but not efficient estimator of θ .
- 4. (30%) Let X_1, X_2, \dots, X_n denote a random sample from the probability density function

$$f(x|\theta) = \begin{cases} \frac{3x^2}{\theta^3}, & 0 \le x \le \theta, \\ 0, & \text{otherwise.} \end{cases}$$

and let $Y_{(n)} = \max\{X_1, X_2, \cdots, X_n\}.$

NATIONAL CHENGCHI UNIVERSITY EXAMINATION FORM

系別	應用數學系	考試	數理統計	考試	2023年9月18日	考試	13:00 至 16:00
		科目		日期		時間	

(a) (10 points) Show that $Y_{(n)}$ has probability density function

$$f_{(n)}(x|\theta) = \begin{cases} \frac{3nx^{3n-1}}{\theta^{3n}}, & 0 \le x \le \theta, \\ 0, & \text{otherwise.} \end{cases}$$

- (b) (10 points) Show that $Y_{(n)}$ is sufficient for θ .
- (c) (10 points) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .
- 5. (10%) Let X_1, X_2, \dots, X_n be a random sample from the normal distribution $N(\theta, 1)$. Show that the likelihood ratio test for testing $H_0: \theta = \theta'$ against $H_1: \theta \neq \theta'$, where θ' is specified, leads to the inequality of the form $|\bar{x}_n \theta'| \geq c$, where $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Some Facts:

Let $X \sim Gamma(a,c)$ and $Y \sim Gamma(b,c)$ be two independent random variables. Then

- 1. The p.d.f. of X is $f_X(x) = \frac{x^{a-1}e^{-\frac{x}{c}}}{c^a\Gamma(a)}$, where Γ is the Gamma function such that $\Gamma(n) = (n-1)!$ for any positive integer n.
- 2. E(X) = ac and $Var(X) = ac^2$.
- 3. For any k > -a, $E(X^k) = \frac{\Gamma(a+k) \cdot c^k}{\Gamma(a)}$.
- 4. $X + Y \sim Gamma(a + b, c)$.